High Performance Graph Data Management and Processing (HPGDM 2016)

When Graph Meets Big Data: Opportunities and Challenges

Yinglong Xia Huawei Research America 11/13/2016

The International Conference for High Performance Computing, Networking, Storage and Analysis (SC'16)

Introduction

Recent Growth

Huawei has business in over **170 countries**, with **150,000 employees**, approximately **70,000** of which are engaged in Research & development. Huawei operates a global network of **14 regional headquarters, 16 R&D Centers, 28 Innovation Centers** jointly operated with customers, and 45 Training Centers.

CNY Million	2015	2014	YoY	Consumer Carrie	ess
Carrier Business	232,307	191,381	21.4%	129,128 232,30	7
Enterprise Business	27,609	19,201	43.8%	\$72.9% 25% yrs \$721.4%)
Consumer Business	129,128	74,688	72.9%		
Others	5,965	2,927	103.8%	Enterprise	
Total	395,009	200,197	37.1%	Business 27.609	
CNY Million	2015	2014	YoY	Americas	a
China	167,690	108,674	54.3%	38,976	10
EMEA	128,016	100,674	27.2%	Asia	
Asia Pacific	50,527	42,409	19.1%	Pacific	
Americas	38,976	30,844	26.4%	50,527 \$19.1%	
Others	9,800	5,596	75.1%	EMEA	
Total	395,009	288,197	37.1%	128,016	
			1000	funch	

Graph Analytics Basics

Brief History

Complex Network Analysis

Real world **complex networks** include WWW, Social Network, Biological network, Citation Network, Power Grid, Food Web, Metabolic network, etc.

Import properties/metrics:

- Small-world effect
- Betweenness
- Eccentricity/Centrality
- Transitivity
- Resilience
- Community structure
- Clustering coefficient
- Matching index

Complex network models:

- Poisson random graph
 - degree~Poisson
 - Small world effect
- Watts and Strogatz graph
 - Transitivity
 - Small world effect
- Barabasi and Albert graph
 - Small world
 - Power law

Diversity in Graph Technology

Dynamic graph helps analyze the spatial and temporal influence over the entities in the network

Property graph is widely used as a data storage model to manage the properties of entities as well as the interconnections

Graph technology leads to rich analytic abilities Streaming graph monitors sentiment propagation over time and how the graph structure can impact

Graphical models leverages statistics to inference latent factors in a complex system

Industrial Use Cases

Financial Risk Management

Motivation

- · 56 million small business owners in China
- 1/3 want to finance their ventures
- Weight to 24.3% of the GDP
- 16.3% received loads from banks
- 3/4 citizens in China has no credit history

Emerging approach

- Customer profiling
- Precise engagement
- Anti-fraud control
- · Credit scoring in realtime
- Post-load management
- Lost-customer engage

Public Security

Telecom Fraud

In May 2016, Communications Fraud Control Association (**CFCA**) and the Forum for International Irregular Network Access (**FIINA**), operators ranging from AT&T, Vodafone, Korea Telecom to Orange and Deutsche Telekom shed light on how old and newer forms of fraud are detected and combatted

	service provider's softswitch using those stolen credentials.	
2	Etaudorer's subscribers place a call	Fraudoter's subscribers pay for service.
3	(A) Frauduter sends INVITE to service provider's softswitch.	(8) Service provider's subscribers are billed for the call that was placed using their stolen cradentials, but are unlikely to pay for the fraudulent calls.
4	Service possible routes calls to their declination.	Service provider must pay to complete the station call.

Automated Dupiness Rules

Telecom Fraud Management Solutions Market by Fraud Type

Charilly Percentul Revenue

2015 Projected: * 5600 million US Dollars

Credit/ID N Subervigition

International Reserve Share,

Promium Rate, & Related Fraud

Oypess Fraud, SIM Dox, SMS, OTT

Application traud

& Other Bypass

Analysis

HUAWE

Other I read • Roaming fraud

Existing Graph Systems

Some Existing Products

Visualization

Neo4j System Architecture and Storage Format

Titan System Architecture and Storage Format

OrientDB System Architecture

Glance at Graph Computing Engines

C++11

dat (value)
arc dat value
arc dat value
2
2
2
0.4
2
2
0.4
2
3
5
0.6
3
5
0.9
3
6
1.2
3
5
0.9
3
6
1.2
2
0.3
5
0.9
3
6
1.2
2
0.3
5
0.3
5
0.3
5
0.3
5
0.3
5
0.3
5
0.3
5
0.3
5
6
1.1
2
0.3
5
6
1.1
2
0.3
5
6
1.1
2
0.3
5
6
1.1
2
0.3
5
6
1.1
3
2
0.3
3
4
1.3
3
4
1.3
3
4
1.3
3
3
4
1.3
3
3
4
1.3
3
4
1.3
3
3
4
1.3
3
3
<th

(a) Execution interval (vertices 1-2)

(b) Execution interval (vertices 3-4)

(c) Execution interval (d) Execution interval (vertices 1-2) (vertices 3-4)

GraphChi

18

з

4

Graph in ONOS

Figure 2: Prototype 1 Architecture

Figure 3: Prototype 2 Architecture

HotSDN'2014

Challenges

Challenges - Performance

- Understand performance bottleneck by breaking down the execution time
 - Bottleneck comes from the memory sub-system
 - DTLB is inefficient
 - Cache performs well
 - Cache MPKI rate is high

3 different types of graph computing, with focus on structural traversal, property processing, and graph editing, respectively

Core graph algorithms from 21 real-world use cases

Challenges — Input Sensitivity

- Impact from graph topology
 - Power-law graph results in imbalanced workload due to dense vertices
 - Dense subgraph, sparse backbone
 - Dense subgraph can be converted into matrices
 - Iterative update in a subgraph
 - Road net is easy to decompose

Property type matters

- More time spent on property management
- Computing performance can be negatively impacted

knowledge roadnet LDBC twitter watson L1D Hit Rate 100% 80% 609 60% 2 Hit at 40% 0% 50% L3 Hit Rate 25% 0% 60% DTLB Miss 20% 0% 0.8 0.6 ₩ 0.4 0.2 n BFS DCentr TC GUp **kCore** CComr SPath

Performance is inconsistent across different graph types

Challenges – Impact of H/W Accelerator

- GPU can be helpful
 - Sufficient acceleration by GPU
 - Requires re-design of the algorithms
- Challenges
 - Data must be transferred to GPU
 - Cost of Host to Device data transfer
 - Difficulty in putting large graph into GPU (Double buffering)
 - Sensitive to input graph data

Memory divergency shows higher sensitivity for graph computing on GPU

Challenges – Scale-out Issue

Analysis of data

from Graph500

- Poor data locality and difficult partitioning result in challenges in scaling out the computing
 - Scale-out challenges can be seen in Graph500 analysis
 - Single machine with big memory can help
 - Must be cautious to use many computing nodes

UAWEI

Breakthrough

Graph Platform for Smart Big Data

Unified Graph Data Access Patterns

 \sim

step

step 1

1.1

Experiments

Name	Vertices	Edges	
Kronecker (22)	4.1M	34.1M	
Kronecker (24)	16.7M	165.2M	
Kronecker (26)	57.1M	799.8M	
LDDC-1000K	IM	28.6M	
Twitter-2010	41.7M	1.4B	

	App.	Prep.	Load+Reconstr.	Comp.
	PageRank	1184.64	2535.76	1030.76
GraphCh	BFS	958.991	197.6692	\$2.5688
	885P	966.342	287.8342	\$2.9308
Edge-Set	PageRank	786.199	431.693	557.81
	BFS	703.41	46.1713	11.7145
	555P	712.236	41.5668	25.1802

aggregate: GraphChi 22.2, Edge Set 42.7 Disk read bandwidth over time by GraphChi and EdgesSet. Edge-Set showed up to 2x aggregate bandwidth and more constant IO usage.

Load+Construction Computation

Execution time breakdown on Pagerank running Twitter-2010

Performance improvement of SSSP against GraphChi including data ingestion

Execution time breakdown on Pagerank running Twitter-2010

Opportunities in Graph Technology for Big Data

- Develop high performance graph computing kernels and primitives
 - Graph500 technique based architecture-awareness for graph computing
 - Heterogeneous computing and computing near-data technology
- Reinvent graph technology for supporting cognitive computing
 - One open platform with multiple graph and graph-related technologies
 - Integral consideration on graphical model, streaming graphs, etc. for AI/IoT
- Offer vertical solutions to break through separation among technique stacks
 - Holistic solution for rapidly building industry-level graph analytics solutions
 - Incorporating with market segmentation, such as security, finance, etc.
- Collaborations and Standardization
 - Foster collaboration with relevant professional communities to educate the market
 - Developing domain or cross-domain standardizations

THANK YOU

Yinglong Xia yinglong.xia.2010@ieee.org

